翻訳と辞書
Words near each other
・ Interrupter
・ Interruptible foldback
・ Interruptible operating system
・ Interruptible spectrum
・ Interrupting Chicken
・ Interposing tactics
・ Interposition
・ Interposition (disambiguation)
・ Interposition trunk
・ Interpositive
・ Interpred World Trade Center Sofia
・ Interpresosaurus
・ Interpress
・ Interpret Scotland
・ Interpretability
Interpretability logic
・ Interpretaciones del Oso
・ Interpretant
・ Interpretatio Christiana
・ Interpretatio graeca
・ Interpretation
・ Interpretation (canon law)
・ Interpretation (journal)
・ Interpretation (logic)
・ Interpretation (model theory)
・ Interpretation (philosophy)
・ Interpretation Act
・ Interpretation Act (Northern Ireland) 1954
・ Interpretation Act 1850
・ Interpretation Act 1889


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Interpretability logic : ウィキペディア英語版
Interpretability logic
Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.
Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.
== Examples ==

* Logic ILM: The language of ILM extends that of classical propositional logic by adding the unary modal operator \Box and the binary modal operator \triangleright (as always, \Diamond p is defined as \neg \Box\neg p). The arithmetical interpretation of \Box p is “p is provable in Peano Arithmetic PA”, and p \triangleright q is understood as “PA+q is interpretable in PA+p”.
Axiom schemata:
1. All classical tautologies
2. \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)
3. \Box(\Box p \rightarrow p) \rightarrow \Box p
4. \Box (p \rightarrow q) \rightarrow (p \triangleright q)
5. (p \triangleright q)\wedge (q \triangleright r)\rightarrow (p\triangleright r)
6. (p \triangleright r)\wedge (q \triangleright r)\rightarrow ((p\vee q)\triangleright r)
7. (p \triangleright q)\rightarrow (\Diamond p\triangleright\Diamond q)
8. \Diamond p \triangleright p
9. (p \triangleright q)\rightarrow((p\wedge\Box r)\triangleright (q\wedge\Box r))
Rules inference:
1. “From p and p\rightarrow q conclude q
2. “From p conclude \Box p”.
The completeness of ILM with respect to its arithmetical interpretation was independently proven by Alessandro Berarducci and Vladimir Shavrukov.
* Logic TOL: The language of TOL extends that of classical propositional logic by adding the modal operator \Diamond which is allowed to take any nonempty sequence of arguments. The arithmetical interpretation of \Diamond( p_1,\ldots,p_n) is “(PA+p_1,\ldots,PA+p_n) is a tolerant sequence of theories”.

Axioms (with p,q standing for any formulas, \vec,\vec for any sequences of formulas, and \Diamond() identified with ⊤):
1. All classical tautologies
2. \Diamond (\vec,p,\vec)\rightarrow \Diamond (\vec, p\wedge\neg q,\vec)\vee \Diamond (\vec, q,\vec)
3. \Diamond (p)\rightarrow \Diamond (p\wedge \neg\Diamond (p))
4. \Diamond (\vec,p,\vec)\rightarrow \Diamond (\vec,\vec)
5. \Diamond (\vec,p,\vec)\rightarrow \Diamond (\vec,p,p,\vec)
6. \Diamond (p,\Diamond(\vec))\rightarrow \Diamond (p\wedge\Diamond(\vec))
7. \Diamond (\vec,\Diamond(\vec))\rightarrow \Diamond (\vec,\vec)
Rules inference:
1. “From p and p\rightarrow q conclude q
2. “From \neg p conclude \neg \Diamond( p)”.
The completeness of TOL with respect to its arithmetical interpretation was proven by Giorgi Japaridze.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Interpretability logic」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.